Technical Standards Orders for Aircraft Materials, Parts and Appliances

Part 514 which contains minimum performance standards and specifications for materials, parts, and appliances used in aircraft consists of two subparts. Subpart A contains the general requirements applicable to all Technical Standard Orders. Subpart B contains the technical standards and specifications to which a particular product must conform.

ANY TECHNICAL STANDARD ORDER MAY BE OBTAINED BY SENDING A RE-

QUEST TO FAA, WASHINGTON 25, D.C.

Subpart A-GENERAL

§ 514.0 Definition of terms.

As used in this part:

- (a) "Administrator" means the Administrator of the Federal Aviation Agency or any person to whom he has delegated his authority in the matter concerned.
- (b) "FAA" means Federal Aviation Agency.
- (c) "Manufacturer" means a person who controls the design and quality of an article produced under the TSO system, including all parts thereof and processes and services related thereto obtained from outside sources.
- (d) "Article" means the materials, parts, or appliances for which approval is required under the Civil Air Regulations for use on civil aircraft.

§ 514.1 Basis and purpose.

- (a) Basis. Section 601 of the Federal Aviation Act of 1958, and \$\$ 3.18, 4a.31, 4b.18, 5.18, 6.18, 7.18, 10.21, 13.18, and 14.18 of this title (Civil Air Regulations).
- (b) Purpose. (1) This part prescribes in individual Technical Standard Orders the minimum performance and quality control standards for FAA approval of specified articles used on civil aircraft, and prescribes the methods by which the manufacturer of such articles shall show compliance with such standards in order to obtain authorisation for the use of the articles on civil aircraft.
- (2) The performance standards set forth in the individual Technical Standard Orders are those standards found necessary by the Administrator to assure that the particular article when used on civil aircraft will operate satisfactorily, or accomplish satisfactorily its in-

tended purpose under specified conditions.

§ 514.2 TSO authorization.

- (a) Privileges. No person shall identify an article with a TSO marking unless he holds a TSO authorization and the article meets the applicable TSO standards prescribed in this part.
- (b) Letters of acceptance issued prior to July 1, 1962. An FAA letter of acceptance of a statement of conformance issued for an article prior to July 1, 1962, is an authorization within the meaning of this part and the holder thereof may continue to manufacture such article without obtaining an additional TSO authorization, but shall comply with the requirements of \$514.3 through \$514.10.
- (c) Application. The manufacturer or his duly authorized representative shall submit an application for a TSO authorization together with the following documents (See Appendix A of this subpart for sample application) to the Chief, Engineering and Manufacturing Branch, Flight Standards Division, in the region in which the manufacturer is located.
- (1) A statement of conformance certifying that the applicant has complied with the provisions of Subpart A and the article meets the applicable performance standards established in Subpart B of this part (See Appendix B of this subpart for sample statement of conformance):
- (2) Copies of the technical data required in the performance standards set forth in Subpart B of this part for the particular article;
- (3) A description of his quality control system in the detail specified in § 1.36 of this title (Civil Air Regulations). In complying with

this provision the manufacturer may refer to current quality control data filed with the Agency, as a part of a previous application.

Nors: When a series of minor changes in accordance with § 514.5 is anticipated, the manufacturer may set forth in his application the basic model numbered article with open brackets after it to denote that suffix change letters will be added from time-to-time e.g., Model No. 100 ().

- (d) Issuance. (1) Upon receipt of the application and adequate supporting documents specified in paragraph (c) of this section to substantiate the manufacturer's statement of conformance with the requirements of this part and his ability to produce duplicate articles in accordance with the provisions of this part, the applicant will be given an authorization to identify his article with the applicable TSO marking.
- (2) If the application is deficient in respect to any requirements, the applicant shall, upon request by the Chief, Engineering and Manufacturing Branch, submit such additional information as may be necessary to show compliance with such requirements. Upon the failure of the applicant to submit such additional information within 30 days after the date of the request therefor, his application will be denied and he will be so notified by the Chief, Engineering and Manufacturing Branch.

Nors: The applicant will be issued an authorisation or notified of the denial of his application within 30 days after the date of receipt of such application or, in the event that additional information has been requested, within 30 days after the date of receipt of such additional information.

¹Articles may also be approved and manufactured for use on civil aircraft as a part of the type design of a type exertiscate for an aircraft engine or propaller.

² Regional Offices are located at New York, Atlanta, Kansas City, Fort Worth, Los Angeles, Anchorage.

tion and is in a condition for safe operation;

- (c) Prepare and maintain for each type or model of such article a current file of complete technical data and records in accordance with § 514.6; and
- (d) Permanently and legibly mark each such article with the following information:
- (1) Name and address of the manufacturer,
- (2) Equipment name, or type or model designation,
- (3) Weight to the nearest tenth of a pound,
- (4) Serial number and/or date of manufacturer, and
- (5) Applicable Technical Standard Order (TSO) number.

§ 514.4 Deviations.

Approval for a deviation from the performance standards established in Subpart B may be obtained only if the standard or standards for which deviation is requested are compensated for by factors or design features which provide an equivalent level of safety. A request for such approval together with the pertinent data shall be submitted by the manufacturer to the Chief, Engineering and Manufacturing Branch of the Region in which the applicant is located.

§ 514.5 Design changes.

- (a) By Manufacturer—(1) Minor changes. The manufacturer of an article under an authorization issued pursuant to the provisions of this part may make minor design changes to the article without further approval by the FAA. In such case the changed article shall retain the original model number and the manufacturer shall forward to the Chief, Engineering and Manufacturing Branch such revised data as may be necessary for compliance with §514.2(c).
- (2) Major changes. If the changes to the article are so extensive as to require a substantially complete investigation to determine compliance with the performance standards established in Subpart B, the manufacturer shall assign a new type or model designation to the

a TSO pursuant to the provisions of Part 18 or the applicable airworthiness regulations.

§ 514.6 Retention of data and records.

- (a) A manufacturer holding an authorization issued pursuant to the provisions of this part shall, for all articles manufactured under such authorization on and after July 1, 1962, maintain and keep at his factory:
- (1) A complete and current technical data file for each type or model of article which shall include the design drawings and specifications. This technical data shall be retained for the duration of his operation under the provisions of this part.
- (2) Complete and current inspection records to show that all inspections and tests required to ensure compliance with this part have been properly accomplished and documented. These records shall be retained for at least two years.
- (b) The data specified in paragraph (a)(1) of this section shall be identified and copies transferred to the FAA for record purposes in the event the manufacturer terminates his business or no longer operates under the provisions of this part.

§ 514.7 Inspection and examination of data, articles or manufacturing facilities.

The manufacturer shall, upon request, permit an authorized representative of the FAA to inspect any article manufactured pursuant to this part, and to observe the quality control inspections and tests and examine the manufacturing facilities and technical data files for such article.

§ 514.8 Service difficulties.

Whenever the investigation of an accident or a service difficulty report shows an unsafe feature or characteristic caused by a defect in design or manufacture of an article, the manufacturer shall upon the request of the Chief, Engineering and Manufacturing Branch, report the results of his investigation and the action, if any, taken or proposed by him to correct the defect in design

thorization issued pursuant to the provisions of this part has identified an article by a TSO marking and that such article does not meet the applicable performance standards of this part, the Administrator may, upon notice thereof to the manufacturer, withdraw the manufacturer's authorization and, where necessary, prohibit any further certification or operation of a civil aircraft upon which such article is installed until appropriate corrective action is taken.

§ 514.10 Transferability and duration.

An authorization issued pursuant to the provisions of this part shall not be transferred and is effective until surrendered, or withdrawn, or otherwise terminated by the Administrator.

APPENDIX A
SAMPLE APPLICATION FOR TSO
AUTHORIZATION

(Date)
(Addressed to: Chief, Engineering and
Manufacturing Branch, Federal Aviation Agency, Region.)

Application is hereby made for authorization to use the Technical Standard Order procedures.

Enclosed is a statement of conformance for the article to be produced under TSO-C-----

The required quality control data are transmitted: (herewith) (under separate cover).

Signed ______

APPENDIX B
SAMPLE STATEMENT OF CONFORMANCE

(Addressed to: Chief, Engineering and Manufacturing Branch, Flight Standards Division, Federal Aviation Agency.)

The undersigned hereby certifies that the article listed below by model, type or part number has been tested and meets the performance standards of Technical Standard Order C.... In addition, all other applicable provisions of Part 514 of the Regulations of the Administrator have been met.

The technical data required by the TSO in the quantity specified are transmitted: (herewith) (under separate cover).

Authorization to use TSO identification on this article is requested.

Signed -----

¹ Reference may be made to data already on file with the FAA.

Cockpit Voice Recorders", dated November 1, 1963, 4 and Federal Aviation Agency document entitled, "Environmental Test Procedures for Airborne Electronic Equipment", dated August 31, 1962, 2 except as provided in subparagraph (2) of this paragraph.

- (2) Federal Aviation Agency document, "Environmental Test Procedures for Airborne Electronic Equipment", outlines various test procedures which define the environmental extremes over which the equipment shall be designed to operate. Some test procedures have categories established and some do not. Where categories are established, only equipment which qualifies under one or more of the following categories, as specified in the FAA document, is eligible for approval under this order:
 - (i) Temperature-Altitude Test Categories A, B, C, or D;
 - (ii) Vibration Test Categories A, B, C, D, E, or F;
- (iii) Audio-Frequency Magnetic Field Susceptibility Test Categories A or B;
 - (iv) Radio-Frequency Susceptibility Test Category A; and
 - (v) Emission of Spurious Radio-Frequency Energy Test Category A.
 - (b) Marking.
- (1) In addition to the markings specified in § 514.3(d), the equipment shall be marked to indicate the environmental extremes over which it has been designed to operate. There are six environmental test procedures outlined in the FAA document, "Environmental Test Procedures for Airborne Electronic Equipment", which have categories established. These shall be identified on the nameplate by the words "environmental categories" or, as abbreviated, "Env. Cat." followed by six letters which identify the categories under which the equipment is qualified. Reading from left to right, the category designations shall appear on the nameplate in the following order so that they may be readily identified:
 - Temperature-Altitude Category;
 - (ii) Vibration Test Category;
 - (iii) Audio-Frequency Magnetic Field Susceptibility Test Category;

^{1/}Copies may be obtained upon request addressed to Library Services Division, HQ-630, Federal Aviation Agency, Washington, D.C. 20553

- (3) In some cases such as under the Temperature-Altitude Test Category, a manufacturer may wish to substantiate his equipment under two categories. In this case, the nameplate shall be marked with both categories in the space designated for that category by placing one letter above the other in the following manner: Env. Cat. BBAAAX.
- (c) <u>Data requirements</u>. In accordance with the provisions of § 514.2, the manufacturer shall furnish to the Chief, Engineering and Manufacturing Branch, Flight Standards Division, Federal Aviation Agency, in the region in which the manufacturer is located the following technical data:
- (1) Six copies of the manufacturer's operating instructions and equipment limitations;
- (2) Six copies of the installation procedures with applicable schematic drawings, wiring diagrams, and specifications, indicating any limitations, restrictions, or other conditions pertinent to installation; and
 - (3) One copy of the manufacturer's test report.
 - (d) Effective date. September 2, 1964.

- 4 -

٠<u>و</u> _

------ III MILITON AUDITO

MINIMUM PERFORMANCE STANDARDS FOR COCKPIT VOICE RECORDERS

November 1, 1963

	,	

	1.3	Effects of Test	1
	1.4	Recording Channels	1
	1.5	Input Circuit Design	1
	1.6	Recording Speed	1
2.0	MIN	TIMUM PERFORMANCE STANDARDS UNDER STANDARD TEST	1
	2.1	Continuity of Recording	1
	2.2	Retention of Recorded Information	1
	2.8	Means for Functional Test	1
	2.4	Audio-Frequency Response	1
	2.5	Distortion	1
	2.6	Audio Noise Level—Without Input Signal	1
	2.7	Coupling Between Audio Circuits	1
	2.8	Flutter	2
	2.9	Stray Magnetic Field	2
	2.10	Insulation Resistance	2
	2.11	Cockpit-Mounted Area Microphone Assembly	2
3.0	MIN	IMUM PERFORMANCE STANDARDS UNDER ENVIRONMENTAL	2
	3.1	Temperature-Altitude Test	2
	3.2	Humidity Test	8
	3.3	Shock Test	8
	3.4	Vibration Test	3
	3.5	Temperature Variation Test	8
	3.6	Power Input Test	8
	3.7	Conducted Voltage Transient Test	3
	3.8	Conducted Audio-Frequency Susceptibility Test	3
	3.9	Audio-Frequency Magnetic Field Susceptibility Test	8
	3.10	Radio-Frequency Susceptibility Test (Radiated and Conducted)	8
	3.11	Explosion Test	8
	3.12	Water Immersion Test	8
	3.13	Impact Shock and Fire Protection Test	4
	3.14	Emission of Radio-Frequency Energy	4
		IX A	
1.0	TEST	CONDITIONS	5

communications will be used by aircraft accident investigation personnel to assist them in their duties. The equipment covered by these standards is defined in Appendix A.

Equipment performance under environmental conditions which are normally encountered in routine aeronautical operations are specified herein. In addition, standards are established respecting the ability of the recording medium to survive those conditions likely to be encountered in the event of a serious accident such as crash forces, fire and water.

•			
			1
		•	

- 1.1 Operations of Controls. The operation of controls intended for use during flight, (if any), in all possible position combinations and sequences, shall not result in a condition the presence or continuation of which would be detrimental to the continued performance of the equipment.
- 1.2 Accessibility of Controls. Controls which are not normally adjusted in flight shall not be readily accessible to flight personnel.
- 1.3 Effects of Test. Unless otherwise provided, the design of the equipment shall be such that, subsequent to the application of the specified tests, no discernible condition exists which would be detrimental to the continued performance of the equipment.
- 1.4 Recording Channels. The equipment shall be capable of recording simultaneously at least four channels of information. 1
- 1.5 Input Circuit Design. The design of the equipment shall be such that the connection of the equipment's audio input circuits to other aircraft audio circuits, when accomplished in a manner prescribed by the equipment manufacturer, shall have no adverse effect on the performance of those aircraft audio circuits.
 - 1.6 Recording Speed.

l

- a. The speed at which the recording medium is driven past the recording mechanism shall be compatible with the speed used in a commercially available reproduction equipment capable of satisfactorily reproducing aurally the recorded information on the recording medium.
- b. The recording speed shall not vary more than
 ± 7% from the design speed.

2.0 MINIMUM PERFORMANCE STANDARDS UN-DER STANDARD TEST CONDITIONS,

The test conditions applicable to a determination of the performance of Cockpit Voice Recorders under standard test conditions are set forth in Appendix A of this standard.

- 21 Continuity of Recording. When power is applied to the equipment, the equipment shall continuously record without interruption all information applied to each of the four required recording channel inputs.³
- 2.2 Retention of Recorded Information. The information recorded on each of the four required channels for at least the full thirty minute period immediately

- shall be retained on the recording medium. Information recorded prior to the period thirty minutes immediately preceding removal of power to the equipment may be erased or otherwise obliterated. When electrical power is removed from the equipment, the erasure function shall cease.
- 2.3 Means for Functional Test. An aural or visual means shall be provided for preflight checking the recorder for proper operation.
- 2.4 Audio-Frequency Response. When the level of an audio input signal applied to any of the four required recording channel inputs is held constant and its frequency is varied over the range of 350-3,000 c.p.s., the level of the signal recorded on the recording medium shall not vary more than a total range of 6 db. The input signal level used shall be within the equipment manufacturer's input level limitaitons.
- 2.5 Distortion. The combined noise and distortion of the recorded signal shall not exceed:
- a. Ten percent, when the level of the input signal applied to any of the four required recording channels is equal to the maximum level for which the equipment is designed, and
- b. Six percent, when the level of the input signal is equal to 0.1 of the maximum level for which the equipment is designed.

This standard shall be met at the audio frequency of 1,000 c.p.s.

- 2.6 Audio Noise Level—Without Input Signal. With no input signal applied to any of the four required recording channel inputs, the level of the noise recorded on the recording medium shall be at least 35 db below that level recorded on the recording medium when an input signal at the frequency of maximum response of the channel and having a level equal to the maximum level for which the equipment is designed is applied to the same recording channel input.
- 2.7 Coupling Between Audio Circuits. When a 1,000 c.p.s. input signal having an amplitude equal to the maximum for which the equipment is designed is

¹ See paragraph 2.11.a.

² The term "recording channel input" means that point in the equipment circultry which is ahead of all amplifiers used in the specific recording channel under consideration. This does not include such amplifiers as may be used in the Cockpit-Mounted Area Microphone Assembly (See paragraph 2.11).

 $^{^{\}rm S}$ When measured at the output of a suitable reproduction equipment.

channel.

- 29 Stray Magnetic Field. When the cockpitmounted area microphone assembly of the equipment is placed in an operating condition in an area free from local magnetic disturbances, the stray magnetic field of this microphone assembly shall cause not more than a 5 degrees deflection of a magnetic compass when the closest edge of the microphone assembly is located at a distance of 12 inches from the compass.
- 2.10 Insulation Resistance. The resistance between any exposed conducting material of the cockpit-mounted microphone assembly of the equipment (non-electrical circuit) and the electrical circuit of this assembly, shall be at least 10 megohms when measured with an applied voltage of at least 500 volts d.c.
- 2.11 Cockpit-Mounted Area Microphone Assembly.
- a. General Design Features. The mechanical design of the cockpit-mounted area microphone assembly may be such that all of the components of this assembly (such as the preamplifier or its components) need not be located in the same physical unit as the cockpit-mounted area microphone itself, provided all of the applicable performance standards contained in this document are met. The electrical design of this assembly, however, shall be such that the electrical output (without alteration) of the assembly can be applied directly to two of the four required recording channel inputs.
- b. Frequency Response—Microphone only. The output level of the microphone shall not vary more than 12 db (total spread) when exposed to a constant pressure sound source which is varied over the frequency range of 400 to 3,000 c.p.s. This requirement shall be met over a sound pressure input range of 60 db to 120 db above 0.0002 dyne per square centimeter.
- c. Frequency Response—Microphone Preamplifier only.
- (1) The output level of the microphone preamplifier shall not vary more than 6 db (total spread) when the frequency of an input signal is varied over the pass band for which the equipment is designed and its level is held constant,
- (2) When an input signal of constant level is increased in frequency from 3,000 c.p.s. upwards, the output level of the microphone preamplifier shall continuously decrease.

plied to the input terminals of the preamplifier and with the gain adjusted to produce maximum rated voltage on the output terminals with an input level equivalent to that produced by the microphone(s), for which the preamplifier is designed, exposed to a sound pressure of up to 120 db above 0.0002 dyne per square centimeter, the total harmonic distortion shall not exceed 10 percent.

e. Harmonic Distortion—Microphone only. When the cockpit-mounted area microphone is exposed to a sound pressure source within the range of 60 db to 120 db above 0.0002 dyne per square centimeter at a frequency of 500 c.p.s., the total harmonic distortion of the output of the microphone shall not exceed 10 percent.

3.0 MINIMUM PERFORMANCE STANDARDS Un-DER ENVIRONMENTAL CONDITIONS.

Unless otherwise specified herein, the environmental test procedures applicable to a determination of the performance of cockpit voice recorders under environmental test conditions are set forth in FAA document entitled "Environmental Test Procedures for Airborne Electronic Equipment", dated August 81, 1962.

3.1 Temperature-Altitude Test.

- a. Low-Temperature Test. When subjected to this test:
- (1) The requirements of paragraphs 1.6b., 2.1, 2.3, 2.4, 2.5, 2.8, 2.11c. and 2.11d. shall be met.
- (2) All mechanical devices shall perform their intended functions.
- (3) Following the application of this test, the requirements of paragraphs 2.11b. and 2.11e. shall be met.

b. High Temperature Test.

- (1) When the equipment is operated at the high short-time operating temperature:
- (a) The requirementsof paragraphs 1.6b., 2.1, 2.3, 2.4, 2.5, 2.8, 2.11c. and 2.11d. shall be met.
- (b) All mechanical devices shall perform their intended functions.
- (2) When the equipment is operated at the high operating temperature:
- (a) The requirements of paragraphs 2.1, 2.3, 2.4, 2.5, 2.8, 2.11c. and 2.11d. shall be met.
- (b) All mechanical devices shall perform their intended functions.

- d. Decompression Test. (Applicable only to Category D equipment of the Temperature-Altitude Test.)
- (1) Throughout the decompression test including the prescribed 10-minute period that the equipment is at the decompression test altitude, the requirements of paragraphs 2.1, 2.4 and 2.11c. shall be met, and all mechanical devices shall perform their intended functions.
- (2) Following the application of this test, the requirements of paragraphs 2.11b. and 2.11e. shall be met.

3.2 Humidity Test.

- a. After subjection to this test and immediately following the 15-minute warmup period, the requirements of paragraphs 1.6b., 2.1, 2.4, 2.5, 2.7, 2.8, 2.11c. and 2.11d. shall be met. In addition, all mechanical devices shall perform their intended functions.
- b. Following the application of this test, the requirements of paragraphs 2.11b. and 2.11e. shall be met.

3.3 Shock Test.

- a. Following the application of the operational 6G shocks, the requirements of paragraphs 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.11b., 2.11c., 2.11d. and 2.11e. shall be met and all mechanical devices shall perform their intended functions.
- b. Following the application of the crash safety 15G shocks, the equipment shall have remained in its mounting and no part of the equipment or its mounting shall have become detached and free of the table or of the equipment.
- 3.4 Vibration Test. When subjected to this test:
- a. The requirements of paragraphs 1.6b., 2.1, 2.4, 2.6, 2.7, 2.8 and 2.11c. shall be met and all mechanical devices shall perform their intended functions.
- b. Following the application of this test, the requirements of paragraphs 2.11b. and 2.11e. shall be met.
- 8.5 Temperature Variation Test. When the equipment is subjected to this test, the requirements of paragraphs 1.6b., 2.1, and 2.8 shall be met and all mechanical devices shall perform their intended functions.

3.6 Power Input Test.

a. Power Input Variation Test. When the equipment is subjected to this test, the requirements of

- gust 31, 1962, the requirements of paragraphs 2.1, 22 2.5 and 2.11d. shall be met. In addition, all mechanical devices shall perform their intended functions
- (3) When the equipment is subjected to the tess specified in paragraph 9.2b.(2) Low Voltage Test, of the FAA document, "Environmental Test Procedures for Airborne Electronic Equipment", dated August 31 1962, there shall be no evidence external to the equipment, of the presence of fire or smoke.

3.7 Conducted Voltage Transient Test.

- a. Following the intermittent transients tests, the equipment shall meet the requirements of paragraph: 2.1, 2.4, 2.5, 2.11c. and 2.11d.
- b. When the equipment is subjected to the repetitive transients test, the requirements of paragraphs 2.1, 2.4, 2.5, 2.6, 2.11c. and 2.11d. shall be met.
- 3.8 Conducted Audio-Frequency Susceptibility Test When the equipment is subjected to this test, the requirements of paragraphs 2.3, 2.5, 2.6, and 2.11d shall be met.
- 3.9 Audio-Frequency Magnetic Field Susceptibility Test. When subjected to this test, the equipment shall meet the requirements of paragraphs 2.3, 2.6 and 2.11d.
- 3.10 Radio-Frequency Susceptibility Test (Radiated and Conducted). When subjected to these tests, the equipment shall meet the requirements of paragraphs 2.1, 2.2, 2.3, 2.5, 2.6, 2.11c. and 2.11d.
- 3.11 Explosion Test. If the equipment is intended for installation where an explosive atmosphere may exist, the equipment shall be subjected to the explosion test. During the application of this test, the operation of the equipment shall not cause detonation of the explosive mixture within the test chamber.
- 2.12 Water Immersion Test. (This test is in addition to those contained in the FAA document "Environmental Test Procedures for Airborne Electronic Equipment", dated August 31, 1962.)
- a. Apply to each of the four required recording channel inputs and input signal of 1,000 c.p.s. having a level within the range for which the equipment is designed for a period of 30 minutes.
- b. Remove the recording medium from the equipment and piay it back on a suitable play-back equip-

⁴The application of this test may result in damage to the equipment under test. Paragraph 1.8 does not apply.

be a part of the equipment under test.

- d. Remove the recording medium from the sea water and dry it using drying techniques suitable to the particular recording medium material.
- e. Using the same play-back equipment, measuring equipment, and control and input power voltage settings used in b., play back the recording medium and determine the output level and distortion characteristics of the 1,000 c.p.s. signal on each channel. There shall be no more than a 2 db change from that previously measured in b., for either of these performance parameters and the recording medium shall be intact at the completion of the play-back.
- 3.13 Impact Shock and Fire Protection Test. (This test is in addition to those contained in the FAA document "Environmental Test Procedures for Airborne Electronic Equipment", dated August 81, 1962.
- a. Apply to each of the four required recording channel inputs an input signal of 1,000 c.p.s. having a level within the range for which the equipment is designed for a period of 30 minutes.
- b. Remove the recording medium from the equipment and play it back on a suitable play-back equipment and determine the output level and distortion characteristic of the 1,000 c.p.s. signal on each channel using appropriate measuring equipment. Note the volume and tone control (if any) settings of the play-back equipment during this portion of the test and also the input power voltage.
- c. Replace the recording medium in the equipment under test in its normal location and subject

- subjected to the impact shock test in subparagraph c., subject it to fire of at least 1,100°C. The flames of the fire shall envelope at least 50 percent of the outside area of the equipment under test for a continuous and uninterrupted period of at least 80 minutes. If, subsequent to the impact shock test in c., a visual inspection of the outside of the equipment under test reveals areas of cracks, holes or other openings not existant prior to the impact shock test, these areas shall be included to the greatest extent possible in the required 50 percent of the outside area of the equipment that is enveloped by flames. Allow the equipment under test to cool naturally without the aid of water or other forced cooling.
- e. Remove the recording medium from the equipment which has been exposed to impact shock and fire and, using he same play back equipment, measuring equipment and control and input power voltage settings used in b., play-back the recording medium and determine the output level and distortion characteristics of the 1,000 c.p.s. signal on each channel. There shall be no more than a 2 db change from that previously measured in b., for either of these performance parameters and the recording medium shall be intact at the completion of the play-back.
- 3.14 Emission of Radio-Frequency Energy. The levels of conducted and radiated spurious radio-frequency energy emitted by the equipment shall not exceed those levels specified in Appendix A to the Federal Aviation Agency document, "Environmental Test Procedures for Airborne Electronic Equipment", dated August 31, 1962, for the aircraft category for which the equipment is designed.

herein. It may include a microphone assembly intended for mounting in the aircraft cockpit to pick up all vocal expressions of those flight crew members located within the cockpit (cockpit mounted area microphone); the channel amplifiers; the recording medium and its associated transport mechanism and storage device; and shockmounts, power supplies, and control boxes if these items are intended by the manufacturer to be used with the equipment.

- b. Power Input Voltage—Direct Current. Unless otherwise specified, when the equipment is designed for operation from a direct current power source, all measurements shall be conducted with the power input voltage adjusted to 13.75 v. $\pm 2\%$ for 12-14 v. equipment, or to 27.5 v., $\pm 2\%$ for 24-28 v. equipment. The input voltage shall be measured at the equipment power input terminals.
- c. Power Input Voltage—Alternating Current. Unless otherwise specified, when the equipment is designed for operation from an alternating current power source, all tests shall be conducted with the power input voltage adjusted to design voltage $\pm 2\%$. In the case of equipment designed for operation from a power source of essentially constant frequency (e.g., 400 c.p.s.), the input frequency shall be adjusted to design frequency $\pm 2\%$. In the case of equipment design frequency

- c. Adjustment of Equipment. The circuits of the equipment shall be properly adjusted in accordance with the manufacturer's recommended practices prior to the application of the specified tests.
- e. Test Instrument Processions. Due precautions shall be taken to prevent the introduction of errors resulting from the connection of headphones, voltmeters, oscilloscopes, and other test instruments across the input and output impedances of the equipment during the conduct of the tests.
- f. Amibent Conditions. Unless otherwise specified, all tests shall be conducted under conditions of ambient room temperature, pressure, and humidity. However, the room temperature shall not be lower than 10° C.
- g. Warmup Period. Unless otherwise specified, all tests shall be conducted after a warmup period of not less than 15 minutes.
- h. Connected Loads. Unless otherwise specified, all tests shall be conducted with the equipment inputs and outputs connected to loads having the impedance value for which the equipment is designed.
- i. Nonapplicability of Conditions of Test. In those cases in which it can be shown that the conditions of test set forth above are not applicable to a particular equipment, the conditions of test may be modified as required by the design of the equipment.

·			

ENVIRONMENTAL TEST PROCEDURES FOR AIRBORNE ELECTRONIC EQUIPMENT

AUGUST 31, 1962

	3.2 Order of Tests
	3.3 Measurement of Temperature of Air in Test Chamber
	3.4 Ambient Room Temperature
	3.5 Power Input Voltage
	3.6 Power Input Frequency
4.0	Temperature—Altitude Test
	Category A.
	Category B.
	Category C.
	Category D.
	Category E
	Category F
	4.1 Test Procedure (Low Temperature)
	4.2 Test Procedure (High Temperature)
	4.3 Test Procedure (Altitude)
	Table 12
5.0	Humidity Test
6.0	Shock Test
•	6.1 Operational Shocks
	6.2 Crash Safety Shocks
7.0	Vibration Test
• • •	7 1 Test Procedure
	Table 2
	7.2 Vibration Characteristics of Categories 4
8.0	Temperature Variation Test
	8.1 Alternate Test Procedure
9.0	Power Input Test
	9.1 Power Input Variation Test.
	9.2 Low Voltage Test
0.0	Conducted Voltage Transient Test
	10.1 Intermittent Transients.
	10.2 Repetitive Transients
	Figure 1
	Figure 2
	Figure 3
11.0	Conducted Audio-Frequency Susceptibility Test
	11.1 D.C. Input Power Leads
	11.2 A.C. Input Power Leads
12.0	Audio Frequency Magnetic Field Susceptibility Test
•	12.1 Categories of Equipment
	19.9 Tout Depositure

Ligure 12	17
14.0 Explosion Test	12
14.1 Application and Conditions of Test	
14.2 Test Procedures	
• • • • • • • • • • • • • • • • • • • •	
Figure 13	15
APPENDIX A	
	Page
INTRODUCTION.	17
1.0 Standards on Emission of Spurious Radio Frequency Energy	
• • • • • • • • • • • • • • • • • • • •	
Figure 14	
Figure 15	21
Figure 16.	22
Figure 17	
Figure 18	
Figure 19.	
Figure 20	
Figure 21	
Figure 22	27
Figure 23	27
Figure 24	
Figure 25	
<u> </u>	
Figure 26	29

tory means of determining the performance characteristics of the equipment under conditions representative of those which may be encountered in actual aeronautical operations.

- 2.0 Definition of Terms.
- 2.1 Equipment Temperature Stabilization. Equipment temperature stabilization is that condition wherein (1) the temperature of the largest internal mass is within $\pm 3^{\circ}$ C. of the specified value when the equipment is not operating, or (2) the crest temperatures of the largest internal mass do not differ by more than 5° C. when the equipment is operating.
- 2.2 Maximum Duty Cycle. Maximum duty cycle is the relationship between the maximum length of time for which an equipment is designed to deliver its rated output power and the length of time during which "standby" power only may be applied when such "ON-OFF" operation is periodic.
- 2.3 Not Operating. Not operating is that condition wherein no power is applied to the equipment.
- 2.4 Controlled Temperature Location. Controlled temperature location is a space within an aircraft in which the temperature of the air is maintained, either manually or automatically, within the limits specified in the appropriate category of Table 1 of paragraph 4.0, Temperature-Altitude Test.
 - 3.0 Conditions of Test.
- 3.1 Connection of Equipment. Connect the equipment mechanically and electrically as recommended by the manufacturer, including any cooling provisions, to the extent necessary to make such tests and measurements as are required to determine compliance with the applicable standards of paragraph 3.0, "Minimum Performance Standards under Environmental Test Conditions", of the appropriate FAA airborne electronic equipment Minimum Performance Standards.
- 3.2 Order of Tests. The tests may be conducted in any desired order, with the exception that the humidity test shall not be conducted prior to the temperature-altitude and the vibration tests. The purpose of this exception is to determine whether materials used to protect circuit elements from moisture have lost their protective function due to deterioration from exposure to either extreme temperatures or to vibration.
- 3.3 Measurement of Temperature of Air in Test Chamber.
- a. The temperature of the air in the test chamber shall be measured at such a location within the test chamber that the temperature of the air so measured its representative of that immediately surrounding the equipment. Measurement of chamber wall temperature is not suitable,

- may be employed to approximate a uniform air temperature condition throughout the chamber. When such means are employed, the air blast shall not be directed upon the equipment under test.
- 3.4 Ambient Room Temperature. When tests are conducted under "ambient room temperature", the ambient room air temperature shall be between +10° C. and +40° C.
- 3.5 Power Input Voltage. Unless specified otherwise, all tests shall be conducted with the power input voltage adjusted to design voltage $\pm 2\%$. The input voltage shall be measured at the equipment power input terminals.
 - 3.6 Power Input Frequency.
- a. In the case of equipment designed for operation from an a.c. power source of essentially constant frequency (e.g., 400 c.p.s.), the input frequency shall be adjusted to design frequency $\pm 2\%$, unless otherwise specified.
- b. In the case of equipment designed for operation from an a.c. power source of variable frequency (e.g., 300 to 1,000 c.p.s.), tests shall be conducted with the input frequency adjusted to within 5% of a selected frequency and within the input power frequency range for which the equipment is designed, unless otherwise specified.
- 4.0 Temperature-Altitude Test. Several temperature-altitude test procedures are specified, according to the category for which the equipment is designed to be used, as follows:

Category A—Equipment intended for installation in nonpressurized and noncontrolled temperature locations in aircraft which operate at altitudes up to 45,000 feet m.s.l.

Category B—Equipment intended for installation in nonpressurized and noncontrolled temperature locations in aircraft which operate at altitudes up to 30,000 feet m.s.l.

Category C—Equipment intended for installation in nonpressurized and noncontrolled temperature locations in aircraft which operate at altitudes up to 20,000 feet m.s.l.

Category D—Equipment intended for installation in controlled temperature and pressurized locations in aircraft in which the pressures are no lower than that which is equivalent to an altitude of 15,000 feet m.s.l.

Category E—Equipment intended for installation in nonpressurized but controlled temperature locations in aircraft which operate at altitudes up to 20,000 feet m.s.l.

Category F—Equipment intended for installation in nonpressurized but controlled temperature locations in aircraft which operate at altitudes up to 12,000 feet m.s.l.

¹ The temperature-altitude test and the temperature variation test may be combined, if desired. See paragraph 8.1, Alternate Test Procedure.

termine the compliance with the applicable standards of paragraph 3.0 "Minimum Performance Standards under Environmental Test Conditions" of the appropriate FAA airborne electronic equipment Minimum Performance Standards.

4.2 Test Procedure (High Temperature).

a. At ambient room pressure, with the equipment not operating, stabilize the equipment temperature to within 3° C. of the appropriate High Not Operating Temperature of Table 1. After 30 minutes, adjust the test chamber air temperature to within 3° C. of the High Short-time Operating Temperature specified in Table 1. Operate the equipment at maximum duty cycle for 30 minutes. Determine compliance with the applicable standards of paragraph 3.0, "Minimum Performance Standards under Environmental Test Conditions", of the appropriate FAA airborne electronic equipment Minimum Performance Standards during this 30-minute period.

4.3 Pest Procedure (Altitude).

a. Operate the equipment at maximum duty cycle. Decrease the atmospheric pressure to within 5% of the appropriate Test Altitude specified in Table 1. Conduct this test at ambient room temperature. Determine compliance with the applicable standards of Paragraph 3.0, "Minimum Performance Standards under Environmental Test Conditions", of the appropriate FAA airborne electronic equipment Minimum Performance Standards.

b. This test is intended for application only to Category D equipment. With the equipment operating at the Test Altitude specified in Table 1, reduce the atmospheric pressure to that equivalent to the Decompression Test Altitude specified in Table 1. This reduction in pressure shall be effected within a time period not to exceed 15 seconds. Maintain this reduced pressure for at least 10 minutes, then increase the pressure to that equivalent to the Test Altitude specified in Table 1. Conduct this test at ambient room temperature. Determine compliance with the applicable standards of paragraph 3.0, "Minimum Performance Standards under Environmental Test Conditions", of the appropriate FAA airborne electronic equipment Minimum Performance Standards.

TABLE 1. ALTITUDE-TEMPERATURE CRITERIA

Condition		CAT. A	CAT. B	CAT. C	CAT. D	CAT. E	CAT. F
Maximum Operating Altit	ade	45, 00 0′	30,000	20,000′	15, 000 *	20, 000′	12,000′
Test Altitude		55, 000′	85, 000′	25, 000′	20, 000*	25, 000′	15, 000′
Decompression Test Altitu	ade				40, 000′		
Not Operating	Low	−62° C.	−50° C.	−50° C.	−50° C.	−40° C.	-40° C.
Temperature	High	+71° C.	+71° C.	+71° C.	+71° C.	+71° C.	+71° C.
Short-Time Operating Hig ature	h Temper-	+71° C.	+71° C.	+71° C.	+60° C.	+50° C.	+45° C.
Operating Temperature	Low	−54° C.	-46° C.	−40° C.	−15° C.	-15° C.	-15° C.
	High	+55° C.	+55° C.	+55° C.	+55° C.	+40° C.	+40° C.

^{*}The Maximum Operating Altitude and Test Altitude of Category D equipment represent atmospheres established by pressurization.

² This is not intended to be a temperature shock test. The rate at which the temperature of the equipment under test is reduced from ambient to the appropriate Low Not Operating Temperature specified in Table 1 is optional.

Optionally, the tests specified in this paragraph (4.1.) may be commenced with the initial temperature of the equipment at any value between the appropriate Operating and Low Not Operating Temperatures specified in Table 1.

power for the equipment to warmup. Immediately following the warmup period, determine compliance with the applicable standards of paragraph 3.0, "Minimum Performance Standards under Environmental Test Conditions" of the appropriate FAA airborne electronic equipment Minimum Performance Standards.

6.0 Shock Test.

6.1 Operational Shocks.

- a. Secure the equipment to a shock table by the mounting means intended for use in service installations. Apply to the shock table, with the equipment mounted in each of the following six positions, three shocks each having a peak acceleration of at least 6G and a time duration of at least 10 milliseconds.
 - (1) Normal upright.
 - (2) Suspended upside down.
- (3) At positions such that the longitudinal axis of the equipment successively forms angles of plus 90° and minus 90° (two positions) with the plane of the table.
- (4) At positions such that the lateral axis of the equipment successively forms angles of plus 90° and minus 90° (two positions) with the plane of the table.
- b. After application of the shocks, determine compliance with the applicable standards of paragraph 3.0, "Minimum Performance Standards under Environmental Test Conditions" of the appropriate FAA airborne electronic equipment Minimum Performance Standards.
- 6.2 Crash Safety Shocks. Apply, in each of the six equipment positions listed in paragraph 6.1, one shock having a peak acceleration of at least 15G and a time duration of at least 10 milliseconds. After application of the six shocks, determine compliance with the applicable standards of paragraph 3.0, "Minimum Performance Standards under Environmental Test Conditions" of the appropriate FAA airborne electronic equipment Minimum Performance Standards.

Note: During this test, an equivalent weight may be substituted for the electrical and mechanical components normally mounted within or on the equipment case. Such equivalent weight shall approximate the weight of the components which it replaces and shall be so located that the center of gravity of the equipment is essentially unchanged. The equivalent weight shall not contribute to the strength of the equipment case or its mounting fastenings to a greater extent than the components it replaces.

7.0 Vibration Test.

7.1 Test Procedure.

a. So secure the equipment under test to a vibration table that sinusoidal vibratory motion is exerted parallel

- c. Determine compliance with the applicable standards of paragraph 3.0 "Minimum Performance Standards under Environmental Test Conditions" of the appropriate FAA airborne electronic equipment Minimum Performance Standards.
- d. Repeat the procedures specified in paragraphs 7.1 a., b., and c., with the vibratory motion applied in a direction parallel to the lateral axis of the equipment.
- e. Repeat the procedures specified in paragraphs 7.1 a., b., and c., with the vibratory motion applied in a direction parallel to the vertical axis of the equipment.
- f. If the equipment is to be tested under a vibration category which requires vibration tests in the 55 to 500 cycle frequency range, repeat all of the above test procedures, but starting at 55 cycles and running to 500 cycles and returning to 55 cycles with the excursion so adjusted for each frequency as to produce the constant acceleration figure specified in Table 2.

TABLE 2. CATEGORIZATION OF AIRCRAFT VIBRA-TION CHARACTERISTICS BY AIRCRAFT TYPES AND LOCATIONS THEREIN

AIRCRAFT DESCRIPTION	FURRLAGE	INSTRUMENT PANELS (VIBRA- TION PROTECTED OB OTHERWISE) AND ISOLATED RACKS	
Rotary wing aircraft	A	P	A
Turbo engine fixed wing aircraft	В	С	A
Piston engine fixed wing aircraft, heavy multi- engine type (Over 12,800 lbs.)	E	F	D
Piston engine fixed wing aircraft, light multi- engine type (Under 12,800 lbs.)	r	7	E
Piston engine fixed wing aircraft, light single en- gine type (Under 12,800		-	•
lbs.)	, ,	1 -	,

Optionally, vibratory motion may be first applied to any axis of the equipment, i.e., lateral, vertical or longitudinal. Any sequence thereafter is permissible.

Fither a linear or logarithmic sweep (scan) may be used.

Optionally, the tests specified in paragraphs 7.1 s., b., c., d., c., and f.e may be combined, if desired, with a total sweep time of from 2 to 6 minutes and a total time of 180 minutes.

Category F—Constant total excursion of 0.010" from 10 to 55 c.p.s. with a maximum acceleration of 1.5G.

- 8.0 Temperature Variation Test. Stabilize the equipment temperature at the appropriate Operating Low Temperature specified in Table 1, at ambient room atmospheric pressure with the equipment not operating.7 Operate the equipment at maximum duty cycle for a period of 15 minutes, beginning with "ON" cycle in the case of equipment designed for intermittent duty service, with the voltage and frequency of the primary power source adjusted to standard values. Increase the temperature of the air in the test chamber to the Operating High Temperature specified in Table 1, at a rate s not exceeding 1° C. per minute. In the interval between the time that the equipment temperature stabilizes at the appropriate Operating Low Temperature and the time it stabilizes at the appropriate Operating High Temperature, determine compliance with the applicable standards of paragraph 3.0, "Minimum Performance Standards under Environmental Test Conditions" of the appropriate FAA Airborne Electronic Equipment Minimum Performance Standards.
- 8.1 Alternate Test Procedure. It is permissible to combine the temperature variation test and the temperature-altitude test. In this case, proceed as follows:
- (1) Conduct that portion of the temperaturealtitude test specified in paragraph 4.1.
- (2) Increase the temperature of the air in the test Chamber to the High Operating Temperature specified in the applicable category of Table 1 at a rate onto exceeding 1°C. per minute. In the interval between the time that the equipment temperature stabilizes at the appropriate Low Operating Temperature and the time it stabilizes at the appropriate High Extended-time Operation Temperature, determine compliance with the applicable standards of paragraph 3.0, "Minimum Performance Standards under Environmental Test Conditions", of the appropriate FAA Airborne Electronic Equipment Minimum Performance Standards.
- (3) Conduct those portions of the Temperature-Altitude Test specified in paragraphs 4.2a. through 4.3b. **9.0** Power Input Test.

voltage to 110% of design voltage and the frequency to the highest for which the equipment is designed. The crest factor shall be 1.4, $\pm 10\%$.

Note: For the purposes of this test, equipment which derives a.c. power from an inverter provided exclusively for the equipment shall be considered as d.c. operated.

- b. Operate the equipment at maximum duty cycle for 30 minutes, with the primary power adjusted as specified in paragraph 9.1a. Determine compliance with the applicable standards of paragraph 3.0, "Minimum Performance Standards under Environmental Test Conditions", of the appropriate FAA airborne electronic equipment Minimum Performance Standards during this 30-minute period.
 - c. Adjust the primary power input as follows:
- (1) In the case of equipment designed to operate from a d.c. power source, adjust the primary power voltage to 90% of the design voltage.
- (2) In the case of equipment designed to operate from a.c. primary power sources of essentially constant frequency, such as 400 c.p.s., adjust the primary power voltage to 90% of the design voltage and the frequency to no higher than 95% of design frequency. The crest factor shall be $1.4 \pm 10\%$.
- (3) In the case of equipment designed to operate from a.c. primary power sources of variable frequency, such as 300 to 1,000 c.p.s., adjust the primary power voltage to 90% of design voltage and the frequency to the lowest for which the equipment is designed. The crest factor shall be $1.4 \pm 10\%$.

NOTE: For the purposes of this test, equipment which derives a.c. power from an inverter provided exclusively for the equipment shall be considered as d.c. operated.

d. Operate the equipment at maximum duty cycle for a period of 30 minutes with the primary power adjusted as specified in paragraph 9.1c. Determine compliance with the applicable standards of paragraph 3.0 "Minimum Performance Standards under Environmental Test Conditions" of the appropriate FAA airborne electronic equipment Minimum Performance Standards during this 30 minute period.

9.2 Low Voltage Test.

a. A.C. and D.C. Equipments. Operate the equipment at maximum duty cycle for a period of at least 30 minutes at an input power voltage(s) 80% of standard test voltage(s) in the case of d.c. equipment, or 87%% of standard test voltage(s) in the case of a.c. equipment. During this period, determine compliance with the applicable standards of paragraph 3.0, "Minimum Performance Standards under Environmental Test Conditions", of the

¹ The purpose of this test is to determine certain performance characteristics of the equipment at various temperatures between the Operating Low Temperature and the Extended-time Operation High Temperature specified in the applicable Category of Table 1.

If desired, this rate may, if necessary, be reduced to zero to permit measurements to be taken.

⁹ If desired, this rate may, if necessary, be reduced to zero to permit measurements to be taken.

input power voltage(s) from 100% to 50% of standard test voltage(s) and continue the reduction of the input power voltage(s) from the 50% level to zero input voltage(s) at a rate not greater than 2% of the standard test voltage(s) per minute. Determine compliance with the applicable standards of paragraph 3.0 "Minimum Performance Standards under Environmental Test Conditions" of the appropriate FAA Airborne Electronic Minimum Performance Standards."

NOTE: For the purposes of this test, equipment which derives a.c. power from an inverter provided exclusively for the equipment shall be considered as d.c. operated.

10.0 Conducted Voltage Transient Test. 10.1 Intermittent Transients. With the equipment operating at its normal input voltage(s), apply to each of the d.c. primary input power leads a series of positive and negative voltage transients having the characteristics (amplitude and wave form) appropriate to the applicable normal d.c. input voltages specified in Figure 1, for a period of at least ten (10) seconds and at a rate of not less than two (2) transients per second. Immediately after the ten second period, determine compliance with the applicable standards of paragraph 3.0, "Minimum Performance Standards under Environmental Test Conditions", of the appropriate FAA Airborne Electronic Equipment Minimum Performance Standards. The positive and negative transients should be developed, applied and monitored in a manner similar to that shown in Figures 2 and 3.

10.2 Repetitive Transients. With the equipment operating at its normal input voltage(s), apply to each of the d.c. primary input power leads a series of positive voltage transients having the characteristics (amplitude and wave form) appropriate to the applicable normal d.c. input voltages specified in Figure 1 at a rate of not less than two (2) transients per second and, simultaneously, determine compliance with the applicable standards of paragraph 3.0, "Minimum Performance Standards under Environmental Test Conditions" of the appropriate FAA Airborne Electronic Equipment Minimum Performance Standards. The positive voltage transients should be developed,

with the manufacturer's installation wiring diagram and shall use shielded or twisted wires only where specified. Where no length of interconnecting cables is specified, the cables shall be at least five (5) feet long. Any inputs or outputs from or to other equipment(s) normally associated with the equipment under test shall be adequately simulated.

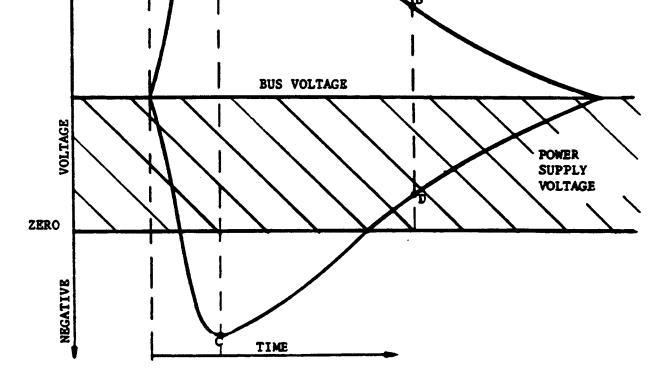
11.2 A.C. Input Power Leads. Apply a sine wave audio frequency signal in series with each ungrounded a.c. input power lead. With the frequency of this signal successively adjusted to the second harmonic of the a.c. power frequency and to each next higher order harmonic up to 9,000 cycles, maintain the r.m.s. amplitude of this signal at not less than 5% of the nominal a.c. input voltage and determine compliance with the applicable standards of paragraph 3.0 "Minimum Performance Standards Under Environmental Test Conditions" of the appropriate FAA Airborne Electronic Equipment Minimum Performance Standards. When conducting this test, all equipment interconnecting cables and RF transmission lines shall be in accordance with the manufacturer's installation wiring disgram and shall use shielded or twisted wires only where specified. Where no length of interconnecting cables is specified, the cables shall be at least five (5) feet long. Any inputs or outputs from or to other equipment(s) normally associated with the equipment under test shall be adequately simulated.

12.0 Audio Frequency Magnetic Field Susceptibility Test.

12.1 Categories of Equipment. For the purpose of this test, equipment is categorized as follows:

Category A—Equipment which is intended for installation in an aircraft which has an a.c. power source having a rating of 250 VA (volt-amperes) or greater.

Category B—Equipment which is intended for installation in an aircraft which has an a.c. power source having a rating of less than 250 VA, or which has no a.c. power source whatever.


12.2 Test Procedure.

Category A—Expose the equipment under test to an audio frequency magnetic field which is generated by a 400 c.p.s. current of at least 20 amperes (r.m.s.) flowing in a straight wire radiator, which is within 12 inches of the periphery of the unit of equipment under test, and deter-

¹⁰ The purpose of this test is to determine those conditions resulting from decreased voltage(s) (such as relay chatter), the presence or continuation of which would contribute to malfunctioning of the equipment at standard test voltage(s).

¹¹ The purpose of this test is to determine whether the reduction of the input power voltage(s) from standard test voltage(s) to zero input voltage(s) produces evidence, external to the equipment, of smoke or fire.

¹³ This test applies to equipment designed to utilize d.c. primary power which is furnished by the aircraft's electrical system. Equipment designed to operate solely on a.c. primary power need not be subjected to this test.

Normal Bus Voltage	Intermitte Test V	nt Transient oltage	Repetitiv Test	ve Transient Voltage
	Point A	Point B	Point A	Point B
28	+78	+46	+48	+35
14	+39	+23	+24	+17
	Point C	Point D		
28	-22	+10		
14	-11	+5		

FIGURE 1.—Transient voltage characteristics.

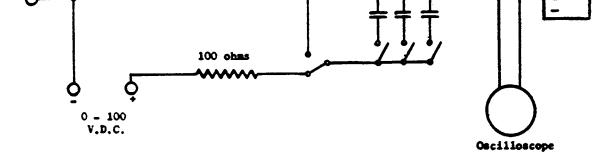


FIGURE 2.—Positive pulse generating network.

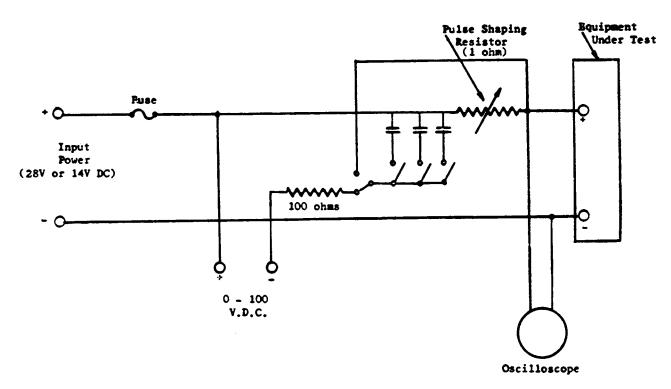


FIGURE 3.—Negative pulse generating network.

13.0 Radio Frequency Susceptibility Test (Radiated and Conducted). For the purposes of this test, sequipment is categorized as follows:

Category A—Equipment which is intended for installation in aircraft having a Maximum Weight of more than 12,500 pounds.

Category B—Equipment which is intended for installation in aircraft having a Maximum Weight of 12,500 pounds, or less.

13.1 General Requirements.

- a. The equipment under test shall be set up on a ground plane and operated in accordance with the following criteria:
- (1) Ground Plane.—A copper or brass ground plane, 0.01 inch thick minimum for copper, 0.025 inch thick minimum for brass, 12-square feet or more in area with a minimum width of 30 inches, shall be used. In all cases where a shielded room is employed, the ground plane shall be bonded to the shielded room at intervals no greater than 3 feet, and at both ends of the ground plane.
- (2) Shock and Vibration Isolators.—The equipment under test shall be secured to mounting bases incorporating shock or vibration isolators, if such mounting bases are specified by the equipment manufacturer. The bonding straps furnished with the mounting base shall be connected to the ground plane. Where mounting bases do not incorporate bonding straps, bonding straps shall not be used in the test setup.
- (3) Bonding.—Only the provisions included in the design of the equipment and specified in the installation instructions shall be used to bond units, such as equipment case and mount, together or to the ground plane. Where bonding straps are required to complete the test setup they shall have a length not greater than 5 times the width, shall have a minimum thickness of 0.025 inch, and shall be copper or brass metal straps, not braid. Connections made with such bond straps shall have clean metal-to-metal contact.
- (4) External Ground Terminal.—When an external terminal is available for a ground connection on the equipment under test, this terminal shall be connected to the ground plane if the terminal is normally grounded in the installation. If the installation conditions are unknown, the terminal shall not be grounded.

b. Test instruments shall be set up and operated in accordance with the following criteria:

where groups, synchros, motors,

etc.).

- (1) Bonding.—Interference meters used for measurement during the "conducted" test shall not be bonded to the ground plane except through the interconnecting coaxial cable. The counterpoise on rod antennas shall be bonded to the ground plane with a strap of such length that the rod antenna can be positioned correctly. The strap shall be as wide as the counterpoise.
- (2) Powerline Stabilisation Network.—One stabilisation network shall be inserted in each ungrounded primary input power lead of the equipment under test. The network enclosure shall be bonded to the ground plane. The network shall be constructed in accordance with Figure 4. The input impedance characteristics of the stabilisation network are shown in Figure 5.
- (3) Antenna Orientation and Positioning in Shielded Enclosures.—The rod or dipole antenna shall be located as shown in Figures 6 or 7. The rod antenna shall be so placed that the antenna is in a vertical position. The rod antenna shall be located at the point where maximum radiation pickup is obtained when it is moved along a line parallel with the edge of the ground plane. Those measurements which use a resonate dipole antenna shall have the dipole positioned parallel with the edge of the ground plane. The dipole antenna shall be centered 12 inches ± 1 inch above the level of the ground plane. The rod or the dipole antenna shall be located at the distance from the equipment under test specified in Figures 6 and 7. When the dimensions of the dipole antenna become smaller than the test layout, the antenna shall be moved parallel to the edge of the ground plane to keep its sensitive elements adjacent to the point of maximum radiation. At frequencies from 25 up to and including 35 megacycles, the measurements shall be taken with the dipole antenna adjusted to resonance at 35 megacycles. The dipole antenna shall be adjusted to resonance at all frequencies above 35 megacycles. In screen room tests, the antennas shall be at least 1 foot away from any wall.
- 13.2 Conducted Radio Frequency Susceptibility Test. With the equipment under test arranged in a manner similar to that shown in Figure 8 apply through the powerline stabilization network an RF signal modulated 30% at 1,000 c.p.s. between each ungrounded primary input power lead and ground. Determine compliance with the applicable standards of paragraph 3.0 "Minimum Performance Standards under Environmental Test Conditions" of the appropriate FAA Airborne Electronic Equip-

is See "Introduction" of Appendix A for information on the relationship between the emission of spurious radio frequency energy from electrical and electronic equipment installed in an aircraft and the levels of radio frequency susceptibility signals used in this test procedure.

specified in Figures 11 and 12 for Category A and Category B installations, respectively. The voltages specified in Figures 11 and 12 are those existing across the radiating antenna terminals. The test signal shall be modulated 30% at 1,000 c.p.s. The type of radiating antenna to be

this test, determine compliance with the applicable standards of paragraph 3.0 "Minimum Performance Standards under Environmental Test Conditions" of the appropriate FAA Airborne Electronic Equipment Minimum Performance Standards.

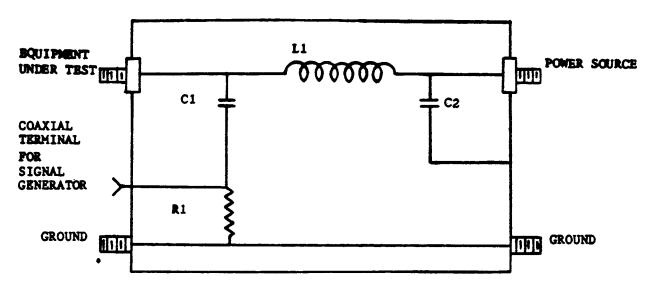


FIGURE 4.—Powerline stabilization network schematic diagram.

ENCLOSURE DATA: 14 GAGE (B & S) ALUMINUM SUGGESTED SIZE 9% IN. BY 4 BY 4 IN.

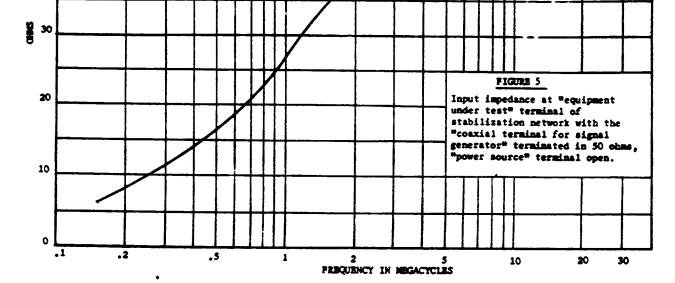
FORM DATA: 5½ IN. LENGTH, 3 IN. DIA (OD), .125 IN. WALL DRILL ½ IN. HOLE 1/6 IN. FROM

EACH END.

COIL DATA: L1=5 MICROHENRIES, 13 TURNS SINGLE LAYER, 4 IN. WINDING LENGTH.

WIRE DATA: AWG 6, 600 VOLT, .310 IN. DIA (OD). (FOR 50 AMPERE NETWORK.)

CAPACITOR: C1 SHALL BE MOUNTED ON 1 IN. INSULATING BLOCK ABOVE GROUND.


CAPACITOR DATA: C1=.1 UF, 600-VOLT DC, BATHTUB.

C2=1 UF, 600-VOLT DC, BATHTUB, SINGLE TERMINAL CASE MOUNTED ON

GROUND.

RESISTOR DATA: R1=5,000-OHM, 5-WATT CARBON.

- 1. The values given for the component parts of the network are nominal. Regardless of the construction or deviation from nominal values, the network must have an impedance within 20 percent of that given in Figure 5.
- 2. Connecting leads to condensers and resistors should be as nearly as possible to zero length.
- 3. Networks may also be constructed having a 1-ohm series resistor between the line and capacitor C2. This 1-ohm resistor shall be made up from ten 10-ohm, 1-watt composition resistors.
- 4. The data given in this figure is suitable for the construction of 50-ampere networks. Other current-carrying networks may be constructed by changing the wire size given for the coil and the size of the over-all enclosure.
- 5. The 50-ohm transmission line should be extended within the enclosure right up to the location where it connects with capacitor C1.

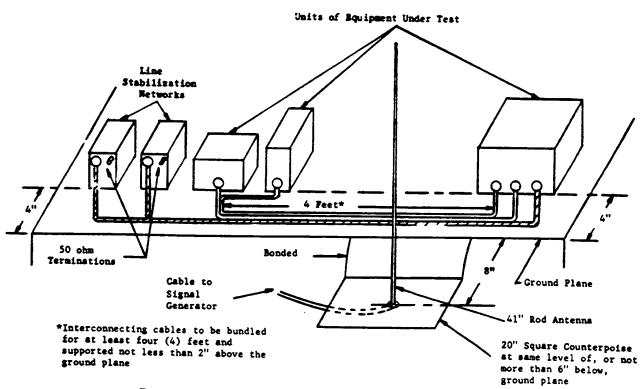


Figure 6.—Location of rod antenna and arrangement of equipment.

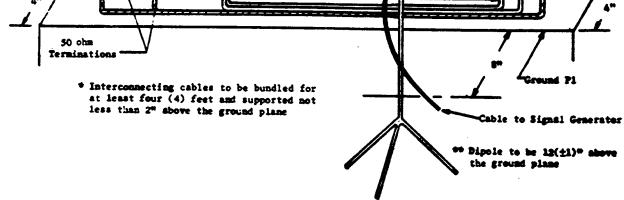


FIGURE 7.—Location of dipole antenna and arrangement of equipment.

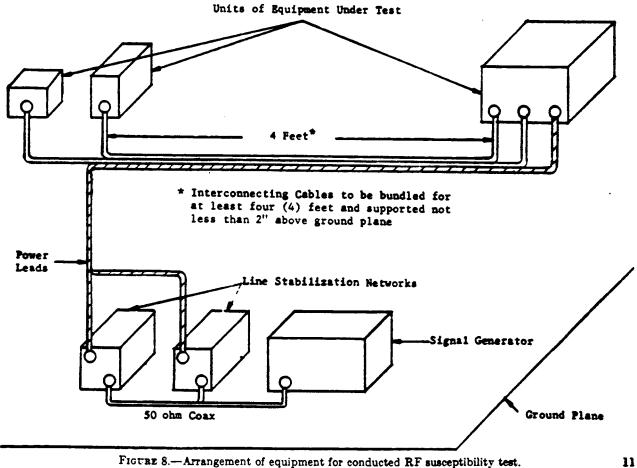
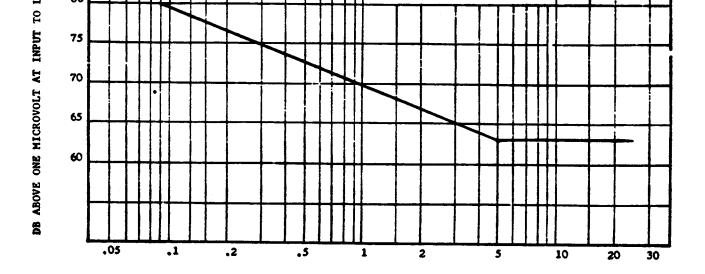
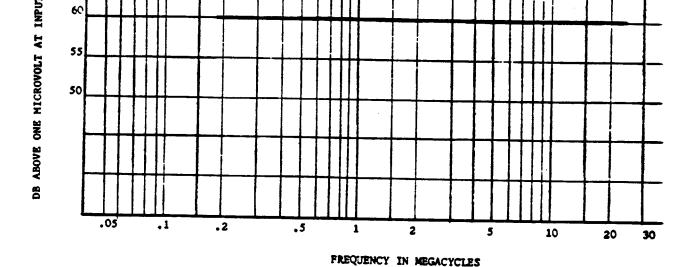



FIGURE 8.—Arrangement of equipment for conducted RF susceptibility test.

14.0 Explosion Test.

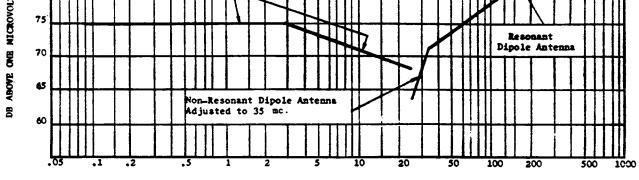
- 14.1 Application and Conditions of Test.
 - a. Application and Categories of Equipment.
- (1) It is recognized that installation practices in civil aircraft and in many non-civil transport aircraft normally do not require the installation of equipment in locations where an explosive atmosphere may exist in the course of normal aircraft operations. For such installations, the Explosion Test is not applicable and the equipment is designated as Categoty "X" equipment.
- (2) It is also recognized that, in special applications and in special purpose aircraft, equipment may be installed in locations where an explosive atmosphere may exist in the course of normal aircraft operations. For these installations, the Explosion Test is applicable and the equipment is designated as Category "E" equipment.
- b. Apparatus. The test chamber shall be a type capable of providing the test environment. A suitable test chamber is described in Military Specification MIL—C-9435.
- c. Fuel. The fuel used shall be 100/130 octane gasoline.
- d. Failure Criteria. It the equipment causes explosion at any of the test altitudes, it shall be considered to have failed to pass the test and no further trials need be attempted.

- e. Applicability Exceptions. Sealed equipment, connecting wires, and cables shall be considered explosion-proof and require no test.
 - f. General Conditions.

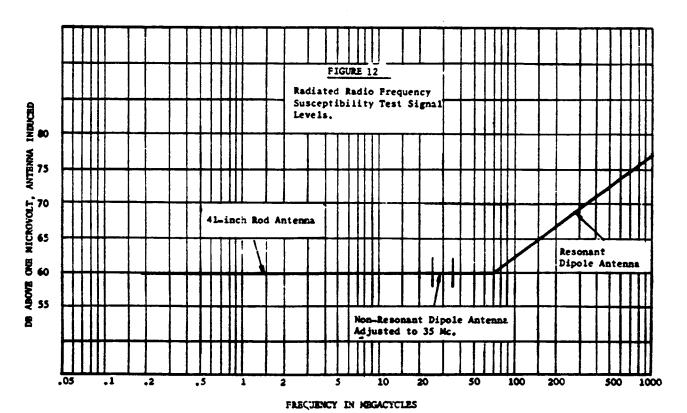

FREQUENCY IN MEGACYCLES

- (1) When necessary, large items of electrical equipment, such as motors, large relays, etc., shall be prepared for explosion-proof testing by drilling and tapping openings in the case for inlet and outlet connections to the fuel vapor air mixture circulating system and for mounting a spark plug. The spark plug is used only for igniting the vapor air mixture in the equipment to insure the presence of an explosive mixture inside the equipment on test. Small items of equipment such as switches, circuit breakers, etc., shall not be drilled and tapped for mounting a spark plug when it is not practicable.
- (2) When the explosion-proof test of paragraph 14.2a.(2) is being performed, dust or other auxiliary covers not intended to be explosion-proof may be removed or loosened to facilitate penetration of the explosive mixture.

14.2 Test Procedures.


a. Procedure I. This procedure is designed to determine the explosion producing characteristics of equipment not provided with cases designed to prevent flame or explosion propagation.¹⁴

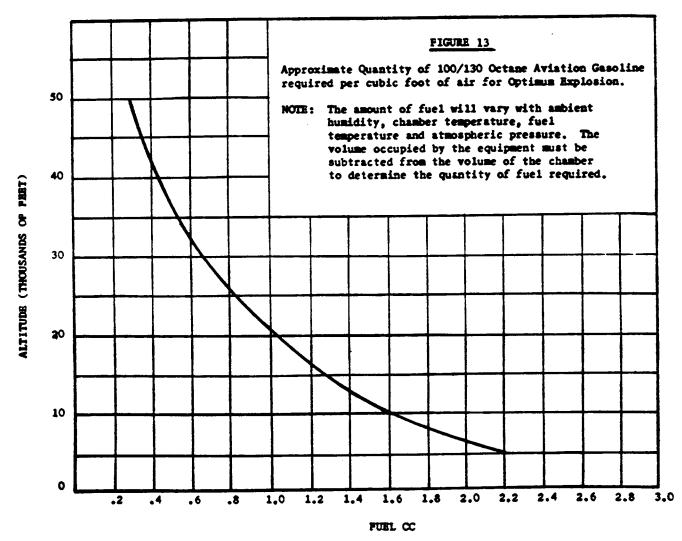
¹⁴ See additional test procedure under paragraph 14.26.



- (1) Preparation for Test.
- (a) The equipment shall be installed in the test chamber in such a manner that normal electrical operation is possible and that mechanical controls may be operated through the pressure seals from the exterior of the chamber. All external covers of the equipment shall be removed or opened to insure adequate circulation of the explosive mixture. Large equipment, comprising multiple units, may be tested one or more units at a time by extending electrical connections through the cable port to units located externally.
- (b) The equipment shall be operated to determine that it is functioning properly and to observe the location of any sparking or high temperature components which may constitute potential explosion hazards.
- (c) Mechanical loads on drive assemblies and servomechanical and electrical loads on switches and relays may be simulated when necessary, if proper precaution is given to duplicating the normal load in respect to torque, voltage, current, inductive reactance, etc. In all instances, it is preferable to operate the equipment as it normally functions in the system during service use.
- (2) Test Procedure. The test shall be conducted at test altitudes of ground level to 5,000 feet, 20,000 feet, and 40,000 feet, except that the highest test altitude shall not exceed the design requirement of the equipment.

- (a) The test chamber shall be sealed and the ambient temperature within shall be raised to $+71\pm8^{\circ}$ C. or to the maximum temperature for which the equipmen is designed to operate (if lower than 71° C.). The temper ature of the test item and the chamber walls shall be permitted to rise to within 11° C. of that of the chamber ambient air, prior to introduction of the explosive mixture
- (b) The internal test chamber pressure shall be reduced sufficiently to simulate an altitude approximately 10,000 feet above the desired test altitude. The quantity of fuel, as determined from Figure 13 shall be introduced into the chamber. A time of 3 ± 1 minutes shall be allowed for the introduction and vaporisation of the fuel. Air shall be admitted into the chamber until a simulated altitude of 5,000 feet above the test altitude is attained.
- (c) Operation of the equipment shall then be commenced, all making and breaking electrical contacts being actuated. If high temperature components are present, a warmup time of 15 minutes shall be permitted. If no explosion results, air shall be admitted into the chamber so as to steadily reduce the altitude below the desired test altitude to an elevation 5,000 feet below that altitude. The operation of the equipment shall be continuous throughout this period of altitude reduction and all making and breaking electrical contacts shall be operated as frequently as possible.

FREQUENCY IN MEGACYCLES



within, shall be installed in the explosion chamber. Testing shall be accomplished without consideration of the equipment operating characteristics; accordingly, the equipment need not be operated. Adequate circulation of the explosive mixture throughout the case shall be provided by optional means.

(b) If it is necessary to drill the case for insertion of a hose from a blower, adequate precaution shall be

between local ground level and 5,000 feet. The ambient chamber temperature shall be at least 25° C. An explosive mixture shall be obtained within the test chamber. (See paragraph 14.2a.(2)(b).

(b) The internal case ignition source shall be energized, in order to cause an explosion within the case. The occurrence of an explosion within the case may be detected by use of a thermocouple inserted in the case and connected to a sensitive galvanometer outside the test

¹⁴ See additional test procedure under paragraph 14.2c.

equipment in that aircraft will emit. It is concluded, therefore, that if the foregoing RF Conducted and Radiated Susceptibility Tests are to achieve their intended purposes, a compatible standard on the maximum permissible level

(

weight of the aircraft in which the electrical/electroni equipment is intended to be installed must be applie to each unit of equipment incorporated in such installatio:

c. Radiated RF Interference. Radiated interference fields generated by the equipment within the frequency ranges and in excess of the values shown in Figures 20, 21, 22, and 23 for Categories A and B, respectively, shall not be radiated from any unit, cable (including, but not limited to, control, pulse, i-f, video, antenna transmission and power cables) or interconnecting wiring. This requirement includes, but is not limited to, oscillator radiation, other spurious emanations and broadband interference. This does not include radiation emanating from antennas or, in the case of transmitters, any radiation

Note: The emission of spurious radio-frequency energy from the equipment resulting from manual operation of switches, but not including any electrical or electromechanical operations resulting from manual operation of switches, may exceed the limits stated in paragraphs 1.0b. and 1.0c. if its duration does not exceed one second.

on the selected frequency $\pm 50\%$ of the band of frequencies

2.0 Test Procedure.

1

(

between adjacent channels.

- a. Equipment Required.
- (1) Interference measuring instrument.—Empire Devices Model NF-105 (including heads and antennas), or equivalent.
- (2) Line stabilization networks that meet the requirements of paragraph 2.b.(2)(b).
 - b. General Requirements.
- (1) The equipment under test shall be set up on a ground plane and operated in accordance with the following criteria:
- (a) Ground Plane.—A copper or brass ground plane, 0.01 inch thick minimum for copper, 0.025 inch thick minimum for brass, 12-square feet or more in area with a minimum width of 30 inches, shall be used. In all cases where a shielded room is employed, the ground plane shall be bonded to the shielded room at intervals no greater than 3 feet and at both ends of the ground plane.
- (b) Shock and Vibration Isolators.—The equipment under test shall be secured to mounting bases incorporating shock or vibration isolators, if such mounting bases are specified by the manufacturer. The bonding straps furnished with the mounting base shall be connected to the ground plane. Where mounting bases do not incorporate bonding straps, bonding straps shall not be used in the test setup.
- (c) Bonding.—Only the provisions included in the design of the equipment and specified in the installation instructions shall be used to bond units, such as equipment

- be in accordance with the manufacturer's installation wiring diagram and shall use shielded or twisted wires only where specified. Where no length of interconnecting cables is specified, the cables shall be at least five (5) feet long. Any inputs or outputs from or to other equipments associated with the equipment under test shall be adequately simulated.
- (f) Dummy Antennas.—The dummy antenna shall have electrical characteristics which closely simulate those of the normal antenna, and should be shielded. It shall contain electrical components which are used in the normal antenna (such as filters, crystal diodes, synchros, motors, etc.).
- (2) Test instruments shall be set up and operated in accordance with the following criteria:
- (a) Bonding.—Interference meters used for measurement during the "conducted" test shall not be bonded to the ground plane except through the interconnecting coaxial cable. The counterpoise on rod antennas shall be bonded to the ground plane with a strap of such length that the rod antenna can be positioned correctly. The strap shall be as wide as the counterpoise.
- (b) Powerline Stabilization Network.—One stabilization network shall be inserted in each ungrounded primary input power lead of the equipment under test. The network enclosure shall be bonded to the ground plane. The network shall be made in accordance with Figure 14. The input impedance characteristics of the stabilization network are shown in Figure 15.
- (c) Antenna Orientation and Positioning in Shielded Enclosures-The rod or dipole antenna shall be located as shown in Figures 25 or 26. The rod antenna shall be so placed that the antenna is in a vertical position. The rod antenna shall be located at the point where maximum radiation pickup is obtained when it is moved along a line parallel with the edge of the ground plane. Those measurements which use a resonant dipole antenna shall have the dipole positioned parallel with the edge of the ground plane. The antenna shall be centered 12 inches ±1 inch above the level of the ground plane. The rod or the dipole antenna shall be located at the distance from the equipment under test specified in Figures 25 or 26. When the dimensions of the dipole antenna become smaller than the test layout, the antenna shall be moved parallel to the edge of the ground plane to keep its sensitive elements adjacent to the point of maximum radiation. At frequencies from 25 up to and including 35 megacycles. the measurements shall be taken with the dipole antenna

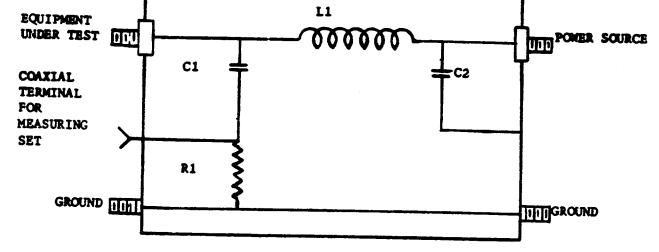


FIGURE 14.—Powerline stabilization network schematic diagram.

ENCLOSURE DATA: 14 GAGE (B & S) ALUMINUM SUGGESTED SIZE 9% IN. BY 4 BY 4 IN.

FORM DATA: 5¼ IN. LENGTH, 3 IN. DIA (OD), .125 IN. WALL DRILL % IN. HOLE % IN. FROM

EACH END.

COIL DATA: L1=5 MICROHENRIES, 13 TURNS SINGLE LAYER, 4 IN. WINDING LENGTH.

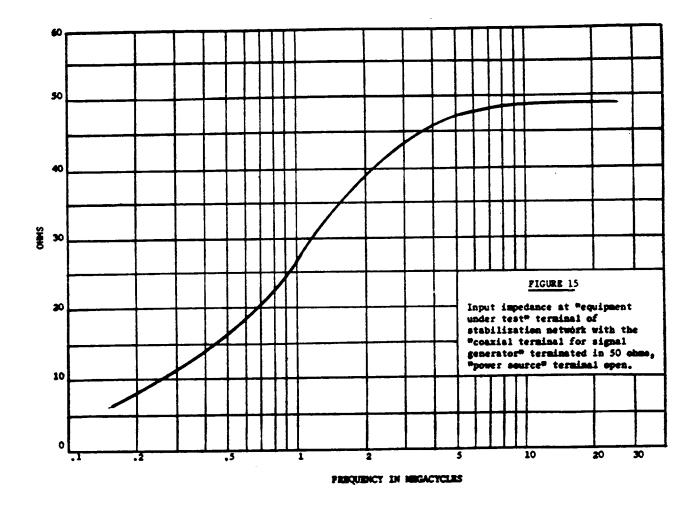
WIRE DATA: AWG 6, 600 VOLT, .310 IN. DIA (OD). (FOR 50-AMPERE NETWORK.)

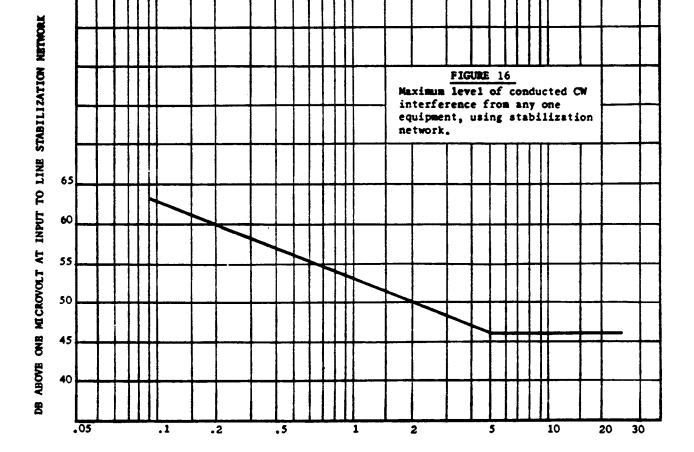
C1 SHALL BE MOUNTED ON 1 IN. INSULATING BLOCK ABOVE GROUND. CAPACITOR:

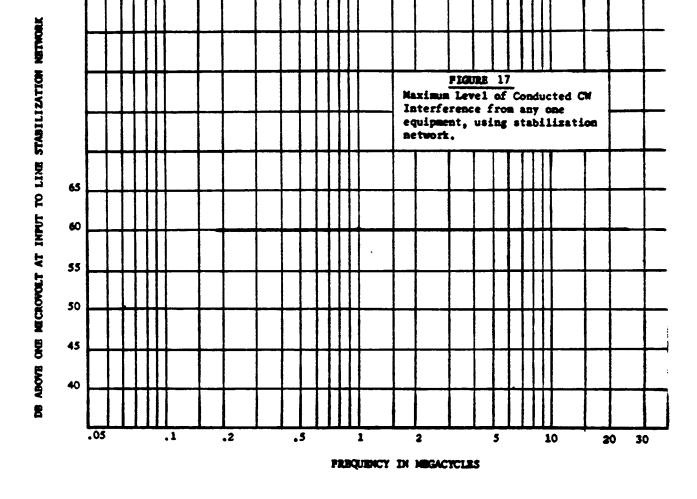
CAPACITOR DATA: C1=.1 UF, 600, VOLT DC, BATHTUB.

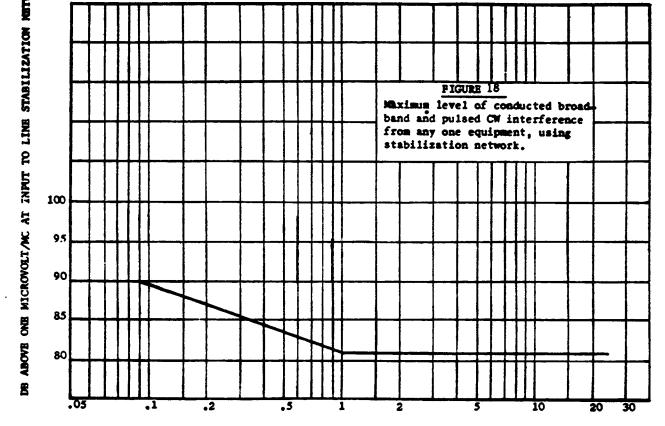
C2=1 UF, 600-VOLT DC, BATHTUB, SINGLE TERMINAL CASE MOUNTED ON GROUND.

RESISTOR DATA: R1=5,000-OHM, 5-WATT CARBON.

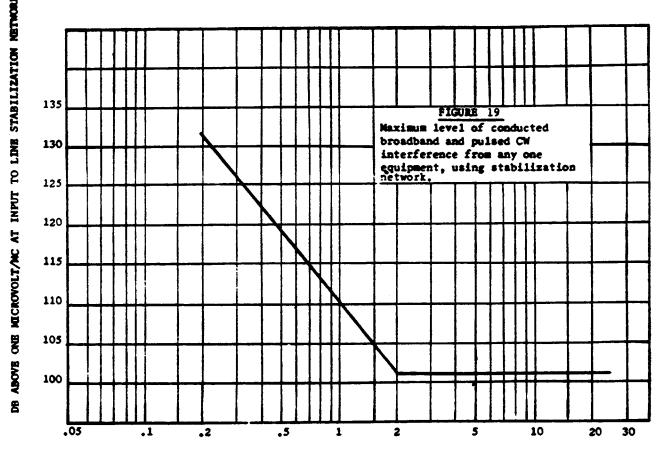

1. The values given for the component parts of the network are nominal. Regardless of the construction or deviation from nominal values, the network must have an impedance within 20 percent of that given in Figure 15.

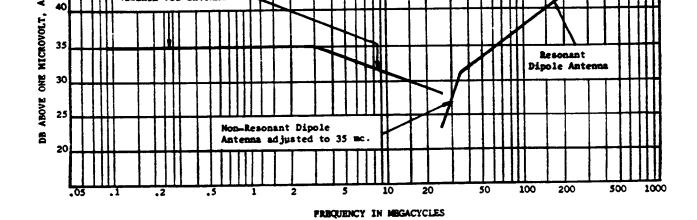

2. Connecting leads to condensers and resistors should be as nearly as possible to zero length.

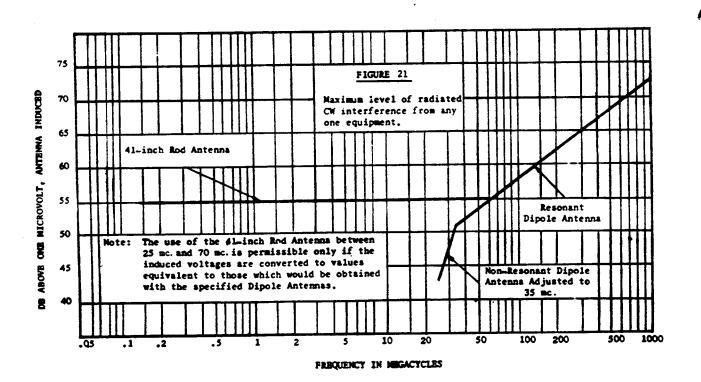

3. Networks may also be constructed having a 1-ohm series resistor between the line and capacitor C2. This 1-ohm resistor shall be made up from ten 10-ohm, 1-watt composition resistors.

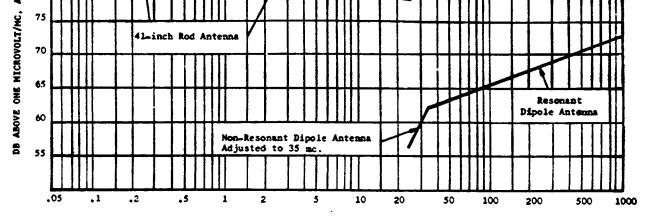

4. The data given in this figure is suitable for the construction of 50-ampere networks. Other current-carrying networks may be constructed by changing the wire size given for the coil and the size of the over-all enclosure.

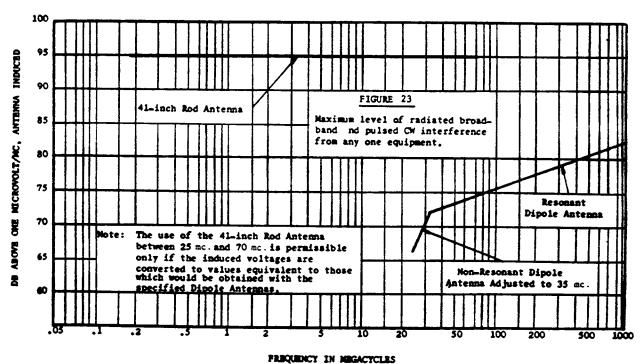
5. The 50-ohm transmission line should be extended within the enclosure right up to the location where it connects with capacitor Cl.








PREQUENCY IN MEGACYCLES


FREQUENCY IN MEGACYCLES

FREQUENCY IN MBGACYCLES

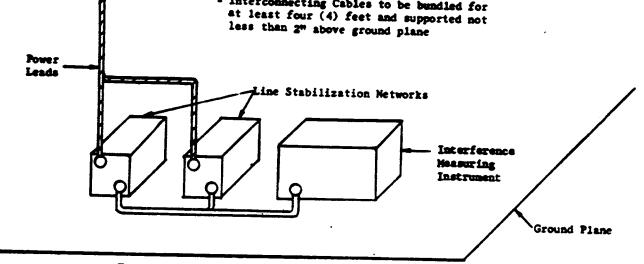


FIGURE 24.—Arrangement of equipment for conducted RF interference test.

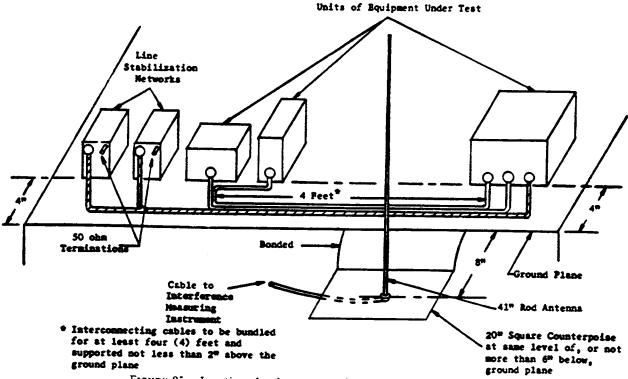


FIGURE 25. Location of rod antenna and arrangement of equipment.

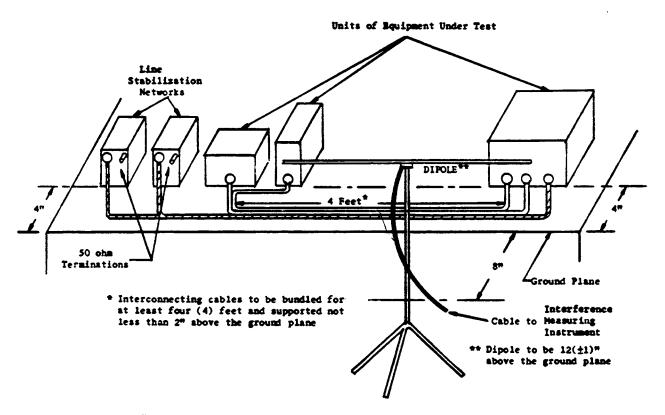


FIGURE 26.—Location of dipole antenna and arrangement of equipment.

		,